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1.0 Introduction

This report concerns the use of multiquadric functions to

approximate scattered data. Here we deal with functions of two

independent variables, but the methods are sasily extendible to

arbitrary dimensions, and we expect that many of the conclusions

will carry over.

The impetus behind our investigation is that of obtaining
surface approximations that are efficient in subsequent

applications. That is, we consider it to be acceptable to expend

considerable computational resources to obtain the approximation

in a preprocessing step. Once obtained, the approximation should

be able to be evaluated fairly efficiently such as when it is to

be used numerous times in an application program.

The scattered data approximation problem is easily described

and occurs frequently in many branches of science. The problem

occurs in any discipline where measurements are taken at

irregularly spaced values of two or more independent variables,

and is especially prevalent in environmental sciences. We will

suppose that triples of data, (xj,yj,zj), j=1, ... , N are given,

assumed to be measurements (perhaps with error) of an underlying
function z=f(x,y). The function f is to be approximated by a

function F(x,y) from the given data. A recent survey of such

methods is given in [FN91).

Multiquadric functions were introduced for interpolation of

scattered data by Hardy [HA71]; also see [HA92] for a historical
survey and many references. The method is one of a class of

methods known now as "radial basis function methods" that

includes other attractive schemes such as thin plate splines
[HD71, DU76, and others]. The basic idea of such methods is

quite simple, and we describe it in some generality; for

purposes of being definite it is pertinent to note that for the . 4
multiquadric method the radial function is h(d) = V(d 2 +r 2 ). In
general, suppose a function of one variable, h(d), where d

denotes distance, is given. ený

For interpolation (that is, exact matching of the given

data), a basis function, Bj(x,y) = h(dj) is associated with each -_
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data point. Here dj = V((x-xj)2+(y-yj)2), distance from (x,y) to

(xj,yj). Thus each basis function is a translate of the radial
function, h. The approximation is a linear combination of the
basis functions, along with some polynomial terms that may be

necessary in some cases, or may be used to assure that the
approximation method has polynomial precision. Thus,

N M
(1) F(x,y) = X ajBj(xy) + E bjqj(x,y)

j=I j=1

where {qj} is a set of M polynomials forming a basis for
polynomials of degree <m. The coefficients aj and bj are
determined by the linear system of equations prescribing
interpolation of the data, and exactness for polynomials of

degree <m:

N M
Z ajBj(xi,yi) + E bjqj(xiyi) = zi, i=1. ... , N

j=l j=l

(2) N

E ajqi(xj,yj) = 0, i=l, ... , M
j=l

For multiquadric basis functions, this system of equations is
known to have a unique solution for distinct (xj,yj) data (see,
for example, [M186)); while m may be taken as zero (no
polynomial terms), the theory indicates that a constant term

should be included, and we have done so in all our work. If
higher degree polynomial precision is desired, inclusion of those

terms imposes no particular burden.
While interpolation theory is important and indicates

something about the suitability of the class of functions for
approximation purposes, our emphasis here is on least squares
approximation. This implies using fewer basis functions than
there are data points. In analogy with univariate cubic splines,

it is convenient to refer to the points are which the radial
basis functions are centered as "knots", as was done in [MF92J,

and we do so here. If a set of knot points, (uk,vk), k=l,...,K ,
with K<N have been specified, then the problem of fitting a
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multiquadric function by least squares is similar to that of

solving the system of equations corresponding to those above in

the least squares sense. We give the details. Now, let Bk(X,y)

denote the radial basis function associated with the point

(uk,vk), Bk(x,y)=V((x-uk) 2 +(y-vk) 2 ). The system of equations,

specialized for our case, is now of the form

K M
Z akBk(xi,yi) + E bjqj(xi,yi) = zi, i=1, ... I N

k=l j=l

(3) 
K
E ak = 0

k=1

There is a question of how to treat the last equation, which

guarantees polynomial precision. In [FC92] the corresponding

constraint equations were imposed exactly, rather than

approximately because of physical considerations. While there is

not the corresponding physical situation here, we have also

imposed the last equation as a constraint. This constraint can

be used to reduce the size of the system by solving for aK in

terms of the other ak and substituting into the first set of

equations.

If the knot points are a subset of the data points, then the

same theory that assures a unique solution of the system for

interpolation also guarantees a unique solution of the least

squares problem. When the knot locations may differ from the

data points, the problem of whether the coefficient matrix is of

full rank or not is unknown to us, although we feel certain that

the matrix is of full rank when the knot points are distinct, and

have encountered no situations that indicate otherwise.

In our implementation of the algorithms described in

subsequent sections we have used a QRP' decomposition of the

coefficient matrix to solve the least squares problem. This

provides a stable and efficient means for solution of the problem

with an indication if a matrix of less than full rank is

encountered.

In order to test the algorithms we have used a number of
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data sets. Several of these are based on previously published

and widely available (x,y) data sets and parent functions. We

have also used a few less readily available data sets that we are

willing to share with anyone interested in obtaining them. Table

1 gives a summary of most of the data set.

n.m This refers to point set n and function m from [FR82],

for n=1, 2, and 3, and m=1, ... , 6. n=l is 25 points,

n=2 is 33 points, n=3 is 100 points. n=4 refers to the

200 point data set used in [MF92]. m=1 is the humps

and dip function, m=2 is the cliff, m=3 is the saddle,

m=4 is the gentle hill, m=5 is the steep hill, and m=6

is the sphere. In addition, m=7 refers to the curved

valley function from ([I78].

GT This refers to the thinned glacier data consisting of

678 points, with certain contour lines removed, from

[MF92].

GL This refers to the thinned glacier data consisting of

873 points.

HF This is the data set from [MF92] generated to be

approximately proportional to curvature, consisting of

500 points.

Table 1: Data sets used extensively in tests

Section 2 deals with a "greedy" algorithm for determining
the location of a reasonable set of knots for approximation of

given data by a least squares multiquadric function. Some

experiences with the method are given. In Section 3 we expand

the algorithm to include the knot locations and the parameter

value of the method as part of the optimization process. Some

results and observations about the process are made, with the
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optimized value of the parameter r being of interest. The
occurrence of near multiple knots is a particularly interesting

phenomenon. In section 4 we further extend the algorithm to
include variable parameter values at the knots. The optimized rk
values and the near multiple knots are again of special interest.

Finally, in Section 5 we discuss some ideas for further

exploration of least squares multiquadric approximations.

2.0 An Adaptive Method for Knot Selection

This section describes a greedy method for the selection of

knot locations for fitting surfaces to scattered data using a
least squares multiquadric function. As noted in the
introduction, the use of fixed knots and parameter value with the
multiquadric function results in a linear system to be solved in
the least squares sense. These are solved using the QRP'
decomposition. The algorithm was implemented in Matlab1 , giving
access to powerful matrix-vector notation that simplifies many

aspects of the implementation. In addition, Matlab allows easy

interactive intervention in the process, with tabular and

graphical information being made available as the computations

proceeds. While an efficient implementation would also provide
for updating the QRP' decomposition as more knots are added, we
have not done this in the experimental program since our
computational resources were sufficient to make it unnecessary.

2.1 The Algorithm

The algorithm proceeds as follows, with the necessary input

being obtained by interrogation of the user. The description

given starts after all input has been obtained.

a) The initial step is to obtain the least squares fit by a

constant function, the average of the data values. The two
data points having maximum positive and maximum negative

error are taken to be the first two knots, (ul,vl) and
(u 2 ,v 2 ). The knot counter K is set to 2.

1 MathWorks, 24 Prime Park Way, Natick. MA 01760

5



b) The least squares multiquadric fit with K knots is obtained.

The residuals are computed along with their rms value, the

approximation is evaluated on a grid of points, a smoothnesa

measure approximately equal to the value of the thin plate

functional over the region is computed, and if the underlying

function is known the rms error on the grid is computed. These

values are then output and a perspective plot of the

approximating surface is given.

c) The maximum absolute value of the residuals is found and the

location of this residual, subject to the minimum knot

separation value, is taken to be the next knot location

(uK,vK). At this point the algorithm proceeds to step b

unless the maximum number of knot locations to be computed

has been reached.

At the termination of the program, the user can restart the

process with any of the parameters changed, with any number of

knot point locations, up to the total number that have been

computed. Hard copy plots of the surfaces and tabular output can

be obtained.

2.2 Some Results

One of the interesting aspects of the multiquadric method

concerns appropriate choice of the parameter, r. Initial advice

was to specify the value in terms of approximate data point

separation [HA71,FR82], although even in [FR82] it was clear that

the best value was dependent on the ordinate data as well. More

recent work [TA85, CF91] has shown this to be the case and an

algorithm for a "good" value was given in [CF91].

While no algorithm was implemented to obtain the best r

value for fixed knots found by the adaptive method above, the

flexibility of the implementation allowed for some interactive

experimentation along these lines. In most cases investigated,

it was found that the value of r used in the process of selecting

the knot locations also was very close to the "best" value (that

is the one that minimized the rms error of the residuals) for
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that particular set of knot locations. Exceptions were when the

number of knots was quite small (5=8), in which case the

multiquadric method shows a striking affinity for best fits with

r very close to zero. Of course, most surfaces with any

complexity cannot be fit well with so few knots. Apparently the

adaptive knot selection process is quit dependent on the r value

used, at least enough to rule out significant improvement by

changing r once the knots have been selected.

While a reasonable a priori choice of the parameter r in

this context can be made, the value of the best r is still an

open question, and is not likely to be resolved anytime soon. As

is pointed out by [CF91], the parameter can be used somewhat like
a tension parameter (small values correspond to "tighter"

surfaces), and consequently surfaces that involve steep gradients

will be approximated with less overshoot by selecting a small
value of r. The tension effects are limited compared with the

results that can be obtained using thin plate splines with

tension (see [FR85]). Other factors enter into the selection of
the r value, however, since small values also lead to rapid

changes in the gradient which may be undesirable.

One of the parameters in the knot selection process is the

minimum separation between knots. It has been found that there

is often an improvement by requiring some moderate separation

between knots, for example imposing a minimum separation of .1

or .2 for 20 knots on the [0,1]2 for point set 3. This tends to

distribute knots more uniformly throughout the region, even when

there are clumps of data. For comparison purposes, the rms

errors (rmse) at the data points and over a 20x20 grid were

computed and are given in Table 2 for several data sets. All 3.m

examples were with r=0.3 and 20 knot points, while the HF data

set used r=0.2 and 50 knot points.
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data set minsep rmse(data) rmse(grid)

3.1 0.0 0.0215 0.0231

0.1 0.0262 0.0281

0.2 0.0210 0.0241

3.2 0.0 0.0122 0.0132

0.1 0.0162 0.0168

0.2 0.0116 0.0133

3.3 0.0 0.0020 0.0023

0.1 0.0014 0.0018

0.2 0.0016 0.0019

3.6 0.0 0.0033 0.0038

0.1 0.0026 0.0031

0.2 0.0053 0.0051

HF 0.0 0.0031 0.0040

0.05 0.0030 0.0037

0.1 0.0032 0.0045

Table 2: rms errors for various separation distances

In the case given in [MF92] where the data was specifically

generated to reflect the curvature of the underlying surface, the

knots computed by this algorithm tend to be gathered in regions

where the density of data points is greatest. Figure 1 gives the

results in one case. It shows the data points and the subset

selected as knot points by the greedy • •@orithm, along with the

contours of the parent surface, in part a. Here the minimum

separation distance of 0.05 was imposed, resulting in a more

regular distribution than when a zero separation distance is

imposed. In part b the surface from which the data was sampled
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is shown. This function is used in later examples (function 1

from the table); the viewpoint is from the right center field.

In part c the surface shown is that constructed by least squares

fit using the knot points in part a. Part d shows the contours

of the approximating surface. Part a can be directly compared

with Figure 3 in [MF92], and it is seen that the distribution is

different, and in particular does not have the nice spacing of

that in (MF91]. Qualitatively the knot locations given here do

reflect the density of the data, however.

The greedy algorithm given here appears to be potentially

useful for many problems where data subject to error is available

and the surface must be app- :imated using an approximation that
is computationally as efficient as possible. A problem which we

have considered, but which needs additional attention, is that of

when enough knots have been generated so that the behavior of the

underlying surface is captured without undue influence by the

errors in the data. For now, this is mostly an unexplored idea,

and we have more to say about it in Section 5.

3.0 Variable Knot Locations and Nultiquadric Parameter

While the adaptive method discussed in the previous section

seemed to perform reasonably well, it was felt prudent to check

the performance of the scheme against one which considered the

knot locations, along with the parameter value, r, to be

variables over which the minimization of rms errors at the data

points was achieved. The function to be minimized in this case

is the same as before, but here we will state it explicitly

rather than in the implied form where the least squares solution

was that of the overdetermined system (3). The minimization

problem is

N K
(4) min Z [zi - Z akBk(xi,yi) - c]2

i=1 k=1

where the minimization is taken over all (uk,vk), r, the ak, and

c (with the last equation of (3) imposed as a constraint). As a

practical matter, for each given knot configuration and r value,
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the least squares solution of (3) computed as a step toward (4).

This results in the solution of a simpler, but equivalent problem

since 2K parameters are eliminated from (4) by imposing the

condition that the values of the a) and c be always taken as

obtained from the least squares solution of (3). Hence, our

final process is more properly written as

N K
(5) min min Z [zi - Z akBk(xi,yi) - c] 2

i=l k=l

where the inner minimization is over the aj and c (least squares

solution of (3), and the outer minimization is over the knot

locations and the value of the parameter r. The global minimum

of each of the two problems are clearly the same. Eq. (5) is the

more restrictive, but any minimum of (4) is a local minimum of

(5), else a better solution is attainable for (4). This does not

imply that the iterative methods employed to solve (5) would work

equally well, nor find the same local minima, when applied to

(4).
When knot locations are allowed to differ from data

locations, the guarantee of full rank of the coefficient matrix

conferred on the system by interpolation theory no longer holds.

As we noted in the Introduction, this has not posed any problems

in our computations.

3.1 Optimization Algorithms and Initial Guesses

We have used two different nonlinear optimization schemes,

both implemented and available as part of Matlab. One is the

procedure FMINS that is based on a simplex procedure [WO85]. The

other is LEASTSQ that is based on the Levinberg-Marquardt

procedure. Both of the routines appear to reliably find good

local minima that are qualitatively similar, although LEASTSQ

often finds a somewhat smaller rms residual and we have used it

for most of the results given here.

The initial guess has a strong influence on the solution

obtained by any nonlinear optimization program. Except for a few

experiments, we have used the results of the greedy algorithm in
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the previous section, with a somewhat judicious guess at the

value of r, as the initial values for the nonlinear optimization.

3.2 Some Results

One of the values of interest is the optimized value of the

parameter r. For function 1 the usual values tended to be around

0.1 to 0.2, although in some cases values outside that range were

obtained; the smallest rms errors were obtained in that range.

For function 2 much smaller values were obtained, generally in

the range less than 0.05. For function 3, values in the range

0.20 to 0.30 were prevalent. For function 6 the value obtained

in the one computation we carried out was more than 10. It is

tempting to try to compare our results with the best values found

for interpolation by [CF91], and with their formula for

approximating the best value. For the moment we can say that for

the most part the data do not seem contradictory, although for

function 3 our values are somewhat smaller. For function 6, the

value we obtained was in line with computational experience in

[CF91] in that the value is quite large.

One very interesting aspect of the results of computing

local minima of (5) is that, with the exception (and then not

always) of computations involving fewer than 10 knots, the

results involved near repeated knots, sometimes several different

pairs with 20 or more knots, and sometimes triples of closely

spaced knots. Because of the nonzero convergence tolerance for

the optimization routine, by "near repeated" knots, we mean those

that are within a distance consistent with the convergence

tolerance. In some cases there were also other knots within

distances of 0.02 or 0.03 for data in the unit square.

The occurrence of near multiple knots suggests that the

method is trying to adapt to some behavior of the surface that

cannot be approximated locally by a single multiquadric basis

function. The behavior of a linear combination of multiquadric

functions at points far away is essentially the same as a single

multiquadric. Because of the local extremum of the multiquadric

function near the knot point, it was not immediately clear what
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could be achieved by a linear combination of multiquadrics at

nearby knot points. Because of this, an investigation of the

behavior of the surface defined by terms in the approximation (1)

corresponding to the near repeated knots was undertaken, and in

particular, comparison with the surface defined by a single

multiquadric having the knot point at the average of the repeated

knots, with coefficient equal to the sum of the coefficients for

the repeated knots. Far away, the behavior of the composite

function must be, and is seen to be, essentially similar to a

single multiquadric. In the vicinity of the knots (and not

necessarily just between them) the behavior can be very

different.

Near multiple knots result in the coefficient matrix being

poorly conditioned, which also allows for the possibility of

large coefficients in the least squares solution of (3). We are

unable to deduce for certain whether the closeness of knots is

required in order for the coefficients to become large, or

whether the closeness is required to obtain the required behavior

in other ways. In one case we looked at, the knots are within

0.0035 of each other, the magnitude of the coefficients is on the

order of 1125, and the condition number of the matrix is larger

than 107, some four orders of magnitude larger than needed for

the magnitude of the coefficients since the data is on the order

of one.

It seems to be true that the most deviant behavior of the

sum of the near multiple terms occurs when the sum of the

coefficients for the nearby knots is relatively close to zero.

As an example showing quite different behavior of the sum of the

terms for two nearby knots from that of the average term, see

Figure 2. Parts a and b show perspective plots of the two

surfaces, while parts c and d show contours of the same two

surfaces. The deviation is striking and make it seem reasonable

that in order to capture local behavior, multiple knots are

necessary since local behavior cannot be affected by basis

functions that are associate with far away knots, and each basis

function itself is locally a hyperboloid (of one sheet - no
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saddles) in shape.

Finally, we give the results of optimizing on the knot

locations and the value of r for the 50 knot approximation

corresponding to Figure 1. The results are shown Figure 3, and

reveal that while many knots have moved from their initial

positions, there density still reflects the same general pattern.

Noteworthy is the fact that there is only one cluster of near

repeated knots, those being the three at about (.44,.78), near

the dip in the surface. Those three are clustered within a

distance of less than 0.01, while there is another knot within a

distance of less than 0.025. Finally we note that the rms error

for the surface was improved from 0.0037 to 0.00023 by the

optimization process; r changed from the initial 0.2 to 0.2389.

4.0 Variable Knot Locations Each with Variable Parameter

The computational experience gained in the variable knot

case, and especially the near repeated knot phenomenon lead us to

consider whether or not the near multiple knots were occurring

because a single value of the parameter at all knot locations was

not necessarily appropriate. Thus, we modified the algorithm to

allow for an independent r value, rk, to be associated with each

knot. The implications for the rank of the system is again not

known. It is, however, easy to find examples of different

parameter values that lead to singular systems in the

interpolation problem. We believe the least squares problem is

more robust, and have found no troublesome cases during our

investigation.

4.1 Some Results

We soon discovered that the use of variable parameter values

did not alleviate the problem of near multiple knots in the

optimized approximation. It is interesting that when multiple

knots occur, the parameter values for those knots are invariably

very close to having the same value. In fact, our limited

experience seems to indicate that most knots tend to have similar

values of the parameter, although there are generally a few that

13



take on smaller values than elsewhere.

Once again, the behavior of the surface in the vicinity of

near multiple knots often reflects behavior that cannot be taken

on by a single multiquadric. As an example of a different kind

of behavior than illustrated by Figure 2, note that Figure 4

shows another case where the near double knot results in a

surface that resembles a quadric with a dimple in it. The rk

values for the two knots are essentially the same.

For comparison purposes between the greedy algorithm, the

variable knot and parameter algorithm, and the variable knot each

with variable parameter value, we look at a case with a few

knots. In Figure 5 we give the results of the greedy algorithm

for the data set 3-1 with 12 knots and an initial knot separation

of 0.2. Parts a-d are, respectively, the point and knot set, the

parent surface, the approximating surface, and contours of the

approximating surface. In Figure 6 the results of the variable

knot and parameter algorithm are given; the initial values were

those resulting in Figure 5. Parts a-d are, respectively, the

point set, the parent surface, the approximating surface, and the

initial and final knots locations. The improvement is clear. In

Figure 7 we see the results of the variable knot, each with

variable parameter value. The parts of the figure are the same

as for Figure 6. Here the improvement is even more spectacular.

The values of the multiquadric parameter and the rms errors at

the data points and on the grid are given in Table 3.

Algorithm r value(s) rmse(data) rmse(grid)

Greedy 0.3 0.0320 0.0341

Var kts, var r 0.158 0.0101 0.0119

Var kts, var rk 0.12-0.66 0.0012 0.0023

Table 3: Data set 3-1 with 12 knots, initial separation of 0.2

The improvement in the rms errors with variable knots is
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significant for this particular data set. In situations where

the number of knots is sufficient to give a reasonable

approximation we find the typical improvement in rms errors is

about by a factor of 3-10 when variable knots and parameter

values is allowed, and another factor of 3-10 when the parameter

values are allowed to vary. This is, however, highly dependent

on the parent surface, for example, the cliff surface

approximations are improved by smaller factors, while the saddle

surface approximations tend to be at the upper end of the scale.

It is interesting to compare the results on this particular

example with those of [CF91] with interpolation to the same data.

There it was found that the ". est" value of the parameter r (that

being about 0.33) lead an approximation (which is the sum of 100

multiquadric terms) which has an rms error of 0.0026. It is

startling to see that the 12 term approximation derived using

variable knots each with variable r has smaller rms error. We

have not followed this line of investigation very far, but

function 2 (cliff) is also approximated well using relatively few

knots.

It appears that the use of variable knots can give a greatly

improved approximation when using multiquadric functions with a

fixed number of knots. When variable parameter values are

allowed the complexity of evaluating the approximation is

essentially unchanged and seems to be a worthwhile improvement

also. While there is a possibility of variable parameter values

resulting in ill conditioning of the system, this does not appear

to be a real problem.

5.0 Conclusions and Suggestions for Further Research

The methods we have developed here appear to be very useful

for the purposes we consider, that of approximating surfaces from

scattered data efficiently for use in subsequent computations.

Which of the three algorithms one might employ to obtain the

approximation depends on several matters that are peculiar to the

data being approximated, as well as the computational

requirements and resources available. If a reasonable
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approximation is required with no heavy burden on subsequent use,

the greedy knot selection process will probably yield a suitable

result. If the final use imposes a high value on efficiency of

evaluation, no doubt use of the two schemes giving optimized knot

locations will look attractive. From our modest experiments it

seems that use of variable parameter values at the knots adds

approximation power beyond its cost.

To begin with, it is desirable to carry out the

investigation with many more sets of data. Exploration of the

process as we have done here is very important, using known

underlying surfaces being approximated for corparison purposes.

However, ultimately the use of the scheme must be for
approximation of data obtained experimentally, or from

environmental measurements. This data is almost invariably

subject to error. While we have does some experimentation with

such data (e, the glacier data), much remains to be done.

There are a number of directions in which this research can
be extended. One idea we have explored slightly is that of using

some measure of smoothness of the surface, in connection with the

rms error at the data points, to determine when to stop the knot

addition process in the greedy scheme. A reasonable stopping

criterion is a necessity in approximating real-world data,

especially if the error characteristics are largely unknown. We
have computed the approximate value of the thin plate functional

for these surfaces with the idea that an significant increase in

the value of the functional accompanied by only slight decrease

in the rms error may signal that complexity is being added to the

surface without actually improving the fit to the underlying

surface by much. We believe it will probably be necessary to

monitor the values over some small numbers of knots, say over 5

or so consecutive numbers of knots. We intend to explore this as

a potential stopping criterion.

In certain sets of data it may desirable to include a

smoothing term along with the rms error at the data points as

part of the objective function in the knot location optimization

schemes. One could take the objective function to be a convex
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combination of the rms error and the value of some functional

related to smoothness of the surface, such as the thin plate

functional. There could be several reasons for this being

desirable, but one is that if there are relative voids in the

data, addition of a smoothing term would tend to give some

control over the behavior of the function in such regions. There

are many unknown factors in such a process. There are numerous

cases where such objective functions have been found useful.

See, for example, [HS91].

The particular form of the measure of smoothness probably

depends on the application, and the use of the thin plate

functional, while convenient and useful in many cases, may not be

the proper one for environmental applications, for example. For

meteorological problems it has been found that functionals

corresponding to higher powers of the Laplacian seem to be

appropriate [FR90]. Whatever the form of the measure of
smoothness, the appropriate choice of weighting between the rms

errors and the smoothness will also have to be discovered.
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Figure Captions

a b
All figures are oriented (sideways) as

C d

Figure 1: a) The 500 data points and the subset of 50 of them
chosen as knot points as generated by the greedy algorithm are
shown. Minimum knot separation enforced was 0.05. Contours of
the parent function sampled for the data are also shown. b) A
perspective plot of the parent function, viewed from a point in
the first quadrant. c) A perspective plot of the plot of the
approximating multiquadric function computed as the least squares
approximation. d) Contours of the approximating function.

Figure 2: The surface representing two terms corresponding to
two nearly repeated knots in a least squares approximation with
optimized knot locations. The region is above the [0,1]2 square.
on which the surface is sampled. b) The surface derived by
averaging the location of the two knots and adding the
coefficients. c) Contours of the surface corresponding to the
two terms in part a. d) The contours of the single multiquadric
term in part b.

Figure 3: a) The parent surface sampled at the 500 points show
in Figure la. b) The approximating least squares multiquadric
with knots at the initial guess points, as in Figure la. c) The
surface corresponding to the least squares approximation using
the optimized knot locations. d) The initial guesses and the
optimized knot locations.

Figure 4: The surface representing two terms corresponding to
two nearly repeated knots in a least squares approximation with
optimized knot locations, each with optimized multiquadric
parameter value; the optimized parameter values are essentially
the same. The region is above the (0,1]2 square on which the
surface is sampled. b) The surface derived by averaging the
location of the two knots and adding the coefficients. c)
Contours of the surface corresponding to the two terms in part a.
d) The contours of the single multiquadric term in part b.
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Figure 5: a) The 100 data points and the subset of 12 of them
chosen as knot points as generated by the greedy algorithm are
shown. Minimum knot separation enforced was 0.2. Contours of
the parent function sampled for the data are also shown. b) A
perspective plot of the parent function, viewed from a point in
the first quadrant. c) A perspective plot of the plot of the
approximating multiquadric function computed as the least squares
approximation. d) Contours of the approximating function.

Figure 6 a) The parent function which was sampled at the 100
points shown in Figure 5a. b) The least squares approximation
constructed from the initial guess knot points, shown in part d
as o's. c) The multiquadric approximation constructed from the
optimized knot locations and (single) parameter value. d) The
initial guess (o's) and optimized (x's) knot locations.

Figure 7: a) The parent function which was sampled at the 100
points shown in Figure 5a. b) The least squares approximation
constructed from the initial guess knot points, shown in part d
as o's. c) The multiquadric approximation constructed from the
optimized knot locations and associated parameter values. d)
The initial guess (o's) and optimized (x's) knot locations.
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